Survey on Semantic and Multimodal Information
Retrieval

Abstract—The massive spreading of digital content across
diverse forms of media has heightened the stakes on retrieval
processes that can comprehend and traverse information in
semantically relevant and modality-sensitive language. Keyword-
based search engines are handicapped when handling multimodal
documents or when attempting to decipher user intent from a
multiplicity of data types. The current review encompasses the
theoretical and background context of semantic and multimodal
information retrieval and provides a stage for more extensive
study. We start our analysis by exploring two classic research
papers that have greatly influenced early perspectives in this
discipline. These papers form the basis of the large body of
subsequent literature, including the wide variety of modern
methodologies and advances in the field. As research in artificial
intelligence and machine learning has evolved, so too have the
tools for semantic understanding and multimodal fusion. Recent
approaches leverage deep learning to align textual, visual, and
auditory modalities, offering powerful new capabilities for precise
and intuitive information retrieval across domains.

Index Terms—Semantic Retrieval, Multimodal Information
Retrieval, Deep Learning, Cross-modal Search, Survey

I. INTRODUCTION

The field of information retrieval (IR) has traveled a great
distance since the arrival of enormous amounts of heteroge-
neous multimedia content. Users nowadays no longer deal just
with text-based information; rather, they need to be able to
search and get meaningful interpretation from images, videos,
audio files, and other non-text data. Modern-day retrieval
systems, therefore, need to possess the ability to interpret and
bring together different sources of data without losing semantic
significance.

This introduces the need for systems that incorporate mul-
timodal processing and semantic comprehension. The ability
to bridge text to image content, or connect natural language
queries with video data, demands sophisticated architecture
beyond lexical matching. The aim of this survey is to provide a
conceptual and historical basis for such systems; this introduc-
tion section thus provides the background and motivation for
a much larger investigation of the state-of-the-art in semantic
multimodal retrieval, which is discussed in greater detail in
the Related Works section.

Basic Concepts

Modality: Refers to the form in which data is represented,
such as text, image, video, or audio.

Multimodal Data: Data that includes two or more modal-
ities. For instance, a webpage with both images and captions,
or a video containing speech, visuals, and subtitles.

Semantic Retrieval: Retrieval based on the meaning and
context of content, not merely syntactic forms or keywords.
Semantic retrieval aims to understand the user’s intent and the
content’s conceptual framework.

II. BACKGROUND AND FOUNDATIONAL WORKS

A. Intelligent Indexing and Semantic Retrieval of Multimodal
Documents

This seminal work discusses early efforts at introducing
semantic interpretation into multimodal indexing. The authors
propose a conceptual framework wherein multimodal doc-
uments are indexed both to their native data types and to
inferences made regarding their semantic meaning [1]]. Their
system integrates text, image, and layout cues to form a
semantically richer representation of documents.

1) Indexing Architecture: The paper introduces a layered
indexing architecture where each modality is first processed
separately to extract modality-specific features. For example,
textual data undergoes natural language processing to extract
key concepts, while images are analyzed for visual patterns
and object recognition. These features are then fused into a
unified semantic index.

2) Semantic Alignment: One of the key contributions of this
paper is that it tries to get various modalities into alignment
at the conceptual level. Instead of dealing with modalities
as independent attributes, the system presented here tries to
find shared semantic concepts. For instance, a picture of a
“mountain” and the caption “snowy peak” are semantically
identical despite their difference in modality.

3) Query Processing and Retrieval: User queries are
searched in a comparable semantic manner. A query may
be a collection of text keywords, a sample image, or both.
Retrieval entails mapping these queries onto a semantically
indexed space so that cross-modal retrieval can be enabled. For
example, a text query may produce corresponding images, or
an image input may result in documents that are semantically
related.

4) Challenges Identified: The paper outlines several chal-
lenges, including:

1) Representing semantics uniformly across modalities.

2) Scalability of multimodal indexing systems.

3) Ambiguity in semantic interpretation.

4) Lack of annotated training data for supervised learning.

Despite being dated, this work sets a precedent for modern
systems that aim to learn joint embeddings across modalities
using deep learning frameworks.
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Bahrain Tuesday Aug. 4 1998, after talks with Iraqi officials on dismantling
Iraq's weapons of mass destruction collapsed. Butler, who will report to
the Security Council on Thursday on the impasse, blamed Iraqis for the
failure of talks.
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Fig. 1. Reproduced from Srihari, R. K., Zhang, Z., and Rao, A. (2000).
“Intelligent Indexing and Semantic Retrieval of Multimodal Documents.”

B. Semantic Search on Text and Knowledge Bases by Hannah
Bast et al.

The main contribution of Bast et al.[2] explores semantic
search processes in unstructured textural content and structured
knowledge bases (KBs). While the paper’s focus is primarily
on text information, the architectural and methodological deci-
sions discussed are of general applicability and form the basis
for systems that can perform semantic searching across various
modalities.

1) Entity-Oriented Search and Semantic Representation:
The authors argue that users search for entities (people, places,
and events, for example) and their interrelations, rather than
for disconnected keywords. This view redirects attention from
syntactic matching to semantic comprehension. In practice,
this means recognizing named entities in searches and an-
choring them to structured representations in a knowledge
repository—a process called entity linking.

Entity disambiguation is important. For instance, the sep-
aration of ”Apple,” the corporation, from “apple,’ the fruit,
needs reasoning dependent on context, which is facilitated
by co-occurrence statistics, knowledge graph embeddings, and
linguistic patterns.

2) Semantic Parsing and Logical Query Mapping: One of
the core contributions of this work is in mapping natural
language queries to structured logical forms such as SPARQL.
This enables querying complex KBs in a way that preserves
the query’s intent. The process of semantic parsing involves
understanding the grammatical and semantic structure of a
sentence and aligning it to formal relations in the KB schema.

This aligns well with the broader goals of semantic search
engines that must handle ambiguous or vague queries, espe-
cially in multimodal settings. A visual or audio query, just
like a textual one, can benefit from an intermediate logical
representation or latent semantic space.

3) Hybrid Search: Combining KBs with Full-Text: Bast et
al. note that even rich KBs are not complete. To help improve
recall, the system returns both KB query results and full-text
search results over a collection of unstructured documents.
This hybrid retrieval approach acknowledges the fact that
not all semantic relations are present in structured form. For

instance, a new fact about a celebrity might be found in news
text prior to its addition to a KB.

This is particularly interesting in multimodal search. Also,
when image tags or transcripts of audio do not have semantic
tags, fallback methods may employ full-text document re-
trieval or caption search to improve result quality.

4) System Architecture and Design Principles: The system
architecture described includes:

1) High-performance indexing of RDF triples from KBs.

2) Named entity recognition and linking tools.

3) A query parser that converts natural language into logi-
cal queries.

4) A scoring function that ranks answers from both KB and
full-text sources.

This architecture embodies a modular and extensible se-
mantic search approach, an important requirement for systems
working over heterogeneous modalities. For instance, a mul-
timodal system can swap the full-text index for a multimodal
embedding space or use vision-language models in place of
text-based entity linkers.

5) Extending to Multimodal Scenarios: Although the pa-
per’s scope is limited to text and knowledge bases, its insights
are foundational for multimodal systems. Consider the follow-
ing parallels:

1) Entity Linking Across Modalities: An image may
contain a face that corresponds to an entity in a KB;
similarly, a video transcript might mention locations or
events that need disambiguation.

2) Semantic Parsing from Non-Textual Inputs: Just as
natural language is parsed into structured queries, visual
scenes or audio patterns can also be parsed into semantic
representations using modern deep learning techniques.

3) Hybrid Modal Search: When structured annotations or
object tags are insufficient, systems can use captions,
ASR transcripts, or OCR-extracted text to supplement
search.

Thus, the paper provides a theoretical and architectural
underpinning for systems that aim to blend semantic reasoning
with heterogeneous data inputs. It guides the formulation of
scalable, hybrid architectures that can bridge gaps in modality
coverage or annotation completeness.

III. RELATED WORKS

This section discusses 18 major research papers that have
significantly contributed to semantic and multimodal informa-
tion retrieval. They are presented in chronological order, and
each is elaborated in detail to provide a clear and comprehen-
sive understanding.

1) DeViSE (2013) — Frome et al. [3] introduced the Deep
Visual-Semantic Embedding Model (DeViSE), which
represented a breakthrough in connecting visual and lin-
guistic domains. Traditional image classification models
were limited to predefined categories, but DeViSE pio-
neered a new approach by projecting images and words
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into a shared semantic embedding space. The architec-
ture consists of two main components: a convolutional
neural network (CNN) trained on ImageNet to extract
visual features, and a skip-gram model (Word2Vec) that
provides distributed word representations. The innova-
tion lies in how these components are connected. Rather
than training the CNN to predict discrete class labels,
DeViSE trains it to map images to the same semantic
space as word vectors. This mapping is learned using a
ranking loss function that ensures images are positioned
close to their corresponding labels in the embedding
space. What makes DeViSE particularly powerful is its
ability to perform zero-shot recognition. Since images
and words share the same semantic space, the model can
recognize objects it has never seen before during train-
ing, as long as there exists a textual description or word
embedding for that object. For example, if the model was
trained on “cat” but not “tiger,” it could still recognize
tigers because the word “tiger” exists in the semantic
space and shares similarities with “cat.” This capabil-
ity fundamentally changed how researchers approached
multimodal retrieval. With DeViSE, users could search
for images using text descriptions, even when those
exact descriptions were never part of the training data.
The model also enabled semantic image search, where
results are ranked based on conceptual similarity rather
than just visual appearance. DeViSE demonstrated that
meaningful cross-modal connections could be estab-
lished through learned embeddings, paving the way for
more sophisticated approaches to semantic and multi-
modal retrieval. Its impact extends beyond academic
research into practical applications like content-based
image retrieval systems and accessible image search
engines that support natural language queries.
Unifying Visual-Semantic Embeddings with Multi-
modal Neural Language Models (2014) — Kiros et
al. [4] proposed a novel approach that unites com-
puter vision and natural language processing through
the confluence of neural language models and visual-
semantic embeddings. The research was one of the key
contributions in multimodal learning in that it came up
with an umbrella under which images and text could be
expressed within a common semantic space.

The authors tackled a basic problem in multimodal
learning: although earlier visual-semantic embedding
models were able to link images with relevant text, they
were unable to create new descriptions or reason about
visual content. On the other hand, language models
were able to produce coherent text but without visual
grounding. This work sought to bring these strands
together to develop systems capable of both compre-
hending and generating language about visual content.
The framework consists of three main components:

a) Visual encoder: A convolutional neural network
(CNN) that extracts image features, specifically

using a pre-trained model on ImageNet.

b) Embedding space: A joint embedding layer that
maps both visual features and textual features into
a common semantic space.

c¢) Neural language model: A recurrent neural net-
work (RNN) that can generate text conditioned on
visual content.

The key innovation was the integration of these compo-
nents into a coherent framework. The model was trained
on image-caption pairs, learning to:
a) Map images and their descriptions to nearby points
in the joint embedding space.
b) Generate appropriate captions for images by con-
ditioning the language model on visual features.
¢) Maintain semantic coherence between visual and
textual modalities.

This approach enabled several capabilities that were
novel for 2014:

a) Bidirectional retrieval: The ability to retrieve
relevant images given text queries and vice versa.

b) Image caption generation: Producing natural lan-
guage descriptions of image content.

¢) Multimodal similarity: Computing semantic sim-
ilarity between images and text based on their
meaning rather than just surface features.

d) Structure-preserving mapping: Maintaining se-
mantic relationships in the embedding space (e.g.,
images of “running dogs” would be closer to text
about ”dogs running” than to unrelated concepts).

The authors demonstrated their system on tasks includ-
ing image-text retrieval and caption generation using
datasets like Flickr8K, Flickr30K, and COCO. The
results showed that unifying visual semantics with lan-
guage models improved performance on both retrieval
and generation tasks compared to models that handled
these tasks independently. Some key technical aspects
of the work included:

a) Contrastive learning: Using a ranking loss func-
tion to ensure that matched image-text pairs had
higher similarity scores than unmatched pairs.

b) Log-bilinear language model: A specific type
of neural language model that was effective for
modeling word sequences conditioned on visual
context.

¢) Embedding normalization: Techniques to ensure
stable training and meaningful distance metrics in
the joint embedding space.

This work was important in the sense that it represented
one of the initial efforts to bring visual and textual com-
prehension together within a comprehensive paradigm,
which set the stage for later developments in multimodal
learning. The findings indicated how neural models
could initiate the creation of a general comprehension
of content between modalities, although the capabilities
were very limited relative to later systems. The paper



L

ag

next to a fence
in a field ,
ihallucination)

Fig. 2.

there is a cat
sitting on a shelf ,

a kitchen with
stainless steal
appliances ,

a young bay standing a wooden table

a plate with a fork a black and white on a parking lot and chairs arranaed
and a piece of cake . phote of a window . parking b nairs arrang
next ta cars . in a room ,

[ 7

e

»’ !-4
a car is parked

this is a herd
in the middle

of cattle out
in the field . of nowhere ,

| g |
a little boy with

a bunch of friends
on the street .

0E

a ferry boat on
a marina with a
group of people |

the two birds are

trying to be seen

in the water ,
{rounting

awoman and

a bottle of wine

ina garden .
{gender)

the handlebars
are trying to ride
a bike rack .

{nansensicali

fe is standing a parked car while
driving down the road ,

{contradiction

Reproduced from Kiros, R., Salakhutdinov, R., and Zemel, R.

S. (2014). “Unifying Visual-Semantic Embeddings with Multimodal Neural
Language Models.”

3)

inspired a fruitful line of research on multimodal neural
networks, and follow-up work created more complex
models for cross-modal comprehension and generation.
Polysemous Visual-Semantic Embedding for Cross-
Modal Retrieval (2019) — Song et al. [5] addressed
a critical issue in semantic retrieval, namely polysemy,
which pertains to the phenomenon wherein words may
possess various distinct meanings contingent upon their
context. Conventional embedding models characterize
each word through a single vector, which fails to capture
semantic distinctions. For instance, the term “bank” may
denote either a financial institution or a location adjacent
to a river—two distinctly different concepts that ought
not to share an identical representation within a semantic
framework. The Polysemous Visual-Semantic Embed-
ding model overcomes this limitation in that words may
have multiple embeddings based on their different senses
or meanings. In this way, it acknowledges the fact that
most of the meaning of a word becomes apparent once
used with a visual context. A photo of flowing water
adjacent to a green grass field, for example, would make
”bank” intelligible in use of its meaning as riverside.”
The model architecture adds a sense disambiguation
module that exists in parallel with standard visual and
textual encoders. In training, the model is learned to gen-
erate multiple sense-specific embeddings for polysemous
words. While processing a query or an image, it dy-
namically selects the most appropriate sense embedding
based on context present (visual or textual). To achieve
this, the researchers employed a two-step strategy: first,
they clustered image features of polysemous terms to
discover different senses; second, they learned separate
embeddings for each discovered sense. During retrieval
time, the model performs ”soft” sense assignment,
whereby it considers multiple potential meanings but
weighs them according to contextual significance. This
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approach greatly improved the accuracy of information
retrieval, especially for queries that contain ambiguous
terms. In practical use, a person looking up apple”
would receive results neatly sorted into fruit and tech-
nology categories, rather than a mixed jumble of both.
Additionally, the model improved cross-modal retrieval
tasks, where users query with an image and then receive
text results (or vice versa). The Polysemous Visual-
Semantic Embedding model highlighted the importance
of contextual understanding in multimodal models. Its
merits have influenced later work on context-aware
embeddings and demonstrated that semantic richness,
beyond simple one-to-one matching, is key to effective
multimodal retrieval.

BERT (2019) — Devlin et al. [6] It has been proposed
as a novel language representation model that drastically
changes the prevailing paradigm in natural language
processing. The model is aimed at resolving a basic
limitation of previous language models by making use
of bidirectional context so that there could be deeper
understanding of language. The main contribution of
BERT is

a) Bidirectional training: As opposed to previous
models, where text was processed unidirectionally,
either left to right or vice versa, BERT is designed
particularly to process both sides of text at once.
The bidirectional approach enables this model to
develop a deeper understanding of context and
word meanings.

b) Pre-training and fine-tuning paradigm: BERT
takes recourse to both dual mechanisms, where
the model is pretrained on large amounts of un-
labeled text by means of two novel unsupervised
language tasks (masked language model and next
sentence prediction) and then fine-tuned to specific
downstream tasks by means of a small set of task-
specific parameters.

c¢) Masked language modeling (MLM): During pre-
training, 15

d) Next sentence prediction (NSP): BERT is trained
to predict whether two sentences appear consec-
utively in the original text, helping it understand
relationships between sentences.

e) Transformer-based architecture: Building on
Vaswani et al.’s Transformer model, BERT uses
attention mechanisms to weigh the importance of
words in relation to each other, regardless of their
position in the sentence.

The researchers developed two variants of the model:

a) BERT-Base: 12 layers, 768 hidden dimensions, 12
attention heads, and 110M parameters.

b) BERT-Large: 24 layers, 1024 hidden dimensions,
16 attention heads, and 340M parameters.

BERT achieved state-of-the-art results on a wide range
of NLP tasks, including:
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a) Question answering: Setting new records on the
Stanford Question Answering Dataset (SQuAD).

b) Natural language inference: Surpassing previous
approaches on the GLUE benchmark.

c) Named entity recognition: Improving perfor-
mance on CoNLL-2003.

d) Sentiment analysis: Achieving superior results on
the SST-2 dataset.

e) Text classification: Demonstrating exceptional
performance across various classification tasks.

The impact of BERT on the field of NLP has been
profound:

a) New paradigm: BERT solidified the pre-train/fine-
tune paradigm that has become standard in NLP.

b) Contextual embeddings: It demonstrated the
power of contextual word representations over
static embeddings.

c) Architecture foundation: BERT inspired numer-
ous subsequent models including RoBERTa, AL-
BERT, DistilBERT, and many others that refined
and built upon its core architecture.

d) Practical applications: The model has been de-
ployed in real-world systems including Google
Search, improving the engine’s understanding of
search queries.

The success of BERT can be traced to its ability to
learn rich, contextualized language representations using
large-scale unsupervised pre-training followed by fine-
tuning to specific tasks. This framework allows the
model to leverage knowledge between many different
natural language processing tasks and requires few
adaptation changes to task-specific architecture designs.
The model’s method of learning bidirectional context
has proved to be a game-changer that has influenced
virtually every subsequent study in language modeling.
Sentence-BERT (2019) — Reimers and Gurevych’s ef-
forts at creating Sentence-BERT [7] represented a sig-
nificant advance in semantic text representation with
important implications for multimodal retrieval systems.
While BERT had revolutionized the natural language
processing domain with its contextual word embeddings,
it was not pre-trained to generate fixed-length sentence
representations critical for the purpose of effective simi-
larity determination and retrieval tasks. Sentence-BERT
updates BERT’s structure by using siamese and triplet
network designs to produce sentence embeddings that
capture semantic meaning. It is learned using natural
language inference datasets, making it possible for the
model to detect contradiction, entailment, and neutral
relation between sentences. This particular objective
forces the model to learn semantic understanding instead
of just encoding syntactic structure. The key innova-
tion is Sentence-BERT’s capacity to produce fixed-
dimensional embeddings, typically 768-dimensional, for
whole sentences or paragraphs. These can be compared
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using simple cosine similarity, making the approach
computationally feasible for large-scale retrieval tasks.
Compared to using the standard BERT for pairwise
comparisons, Sentence-BERT reduces the computation
time from several days to a few minutes when used on
common corpus sizes without sacrificing an equivalent
degree of accuracy. In the context of multimodal infor-
mation retrieval, Sentence-BERT is an essential element
of text encoding. Its combination with visual encoders
enables sophisticated text-to-image retrieval by match-
ing text queries in an identical embedding space that
comprises images. The ability of the model to capture
subtle semantic relationships between sentences is useful
in cross-modal applications. An example would be that
a Sentence-BERT encoding of “person playing guitar
on stage” would be close to both concert guitarist”
and “musician performing live” in embedding space,
regardless of wording variation. This semantic under-
standing integrated with appropriate visual encoders
enables retrieval to link images related to the conceptual
content of queries instead of mandating exact keyword
matches. Additionally, Sentence-BERT enables rapid
retrieval within large-scale multimodal databases. Its
embeddings can be computed and indexed in advance,
allowing for speedy similarity searches when a query
is received. As a result, this has made it extremely
useful for a variety of industrial applications such as
content discovery, recommendation, and semantic search
engines. The impact of Sentence-BERT extends beyond
the scope of academic research since it is an essen-
tial foundation of several production systems requiring
understanding of text semantics. These comprise multi-
modal search engines, where text queries should return
relevant images, videos, or audio content.

Visual BERT (2019) - In their original research, Li et al.
[8]] introduced VisualBERT, which uses the transformer
structure to handle joint analysis of visual and textual
information. Unlike previous approaches that preserved
individual processing of visual and textural information
until later fusion stages, VisualBERT allows for an
early integration of these two modalities, thus support-
ing meaningful cross-modal interaction in the neural
network from the start. The architecture frames image
parts as similar to words in a sentence. Specifically,
it uses recognized objects or image parts (derived by
a pre-trained object detector like Faster R-CNN) and
represents these as ’visual tokens” alongside text tokens
as an integrated sequence. Finally, both modalities pass
jointly in parallel by way of several transformer pro-
cessing layers, allowing for words and image parts to
form relations by way of the self-attention mechanism.
Integration comes about by means of several basic
elements:

a) Visual embeddings: Image components are in-
tegrated into a framework of dimensions that is
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compatible with word embeddings.

b) Position embeddings: Both textual and visual
modules receive information about position.

c) Segment embeddings: Segments need to be clas-
sified as either belonging to the textual or visual
modality.

d) Self-attention layers: Enable interaction between
each unique module and every other module, re-
gardless of modality.

The transformer-based architecture of VisualBERT en-
ables the model to realize complex relationships between
visual and linguistic elements. An example would be
understanding, when examining the sentence “The man
is riding a bicycle” and an image, that the word “’bicycle”
can be related to the region of the image representing
the bicycle and that "man” can be related to the man in
the image. The model is pre-trained on image-caption
pairs with two main goals: masked language modeling,
which predicts hidden words conditioned on both text
and image context, and image-text matching, which
measures how well a caption and an image match.
This pre-training stage strengthens the model’s ability
to understand vision-language relations before it is fine-
tuned for specific tasks. In semantic retrieval, Visual-
BERT has proved that transformer models can success-
fully represent both visual and text-based information
within one semantic framework. This representation
scales precision in cross-modal retrieval, where semantic
content, and not superficial features, drives relevancy.
The impact of VisualBERT existed beyond its immediate
results; it led to the development of the vision-language
transformer” paradigm, now dominating studies in mul-
timodal artificial intelligence. Its formulation showed the
power of using the self-attention mechanism to derive
strong intermodal connections, consequently influencing
a wide range of subsequent models built to perform
activities like multimodal search, visual question an-
swering, and image captioning. This practice showed
that processing multiple modalities concurrently in an
initial phase was superior to late fusion.

DeepStyle (2019) — Tautkute et al. [9] DeepStyle is
a domain-specific multimodal search engine for the
fashion world and an example of semantic understanding
realized in areas where subjective and aesthetic attributes
prevail. In contrast to many multimodal retrieval systems
that focus on tangible object categories or empirical
connections, DeepStyle deals with the complexity of
retrieving items based on intangible concepts like style,
aesthetic appeal, and fashion sense. The system uses
convolutional neural networks to extract visual features
and text encoders to analyze descriptive text content to
enable mapping of both modalities to a common em-
bedding space. DeepStyle differs in its training process
where it uses human judgements of stylistic similarity
to structure the embedding space. To aid in this study,

Our model VSE
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Reproduced from Tautkute et al. (2019), “DeepStyle: Multimodal

Search Engine for Fashion and Interior Design”

the researchers created a large dataset of fashion items,
style-related features, and ratings of stylistic similarity
by users.
The DeepStyle architecture consists of three main com-
ponents:

a) Visual encoder: A modified CNN that extracts
both objective features (color, pattern, shape) and
subjective style features.

b) Text encoder: Processes fashion-specific descrip-
tors and natural language queries.

¢) Cross-modal alignment module: Ensures that
similar styles cluster together in the embedding
space regardless of modality.

The training process incorporates three types of signals:

a) Item metadata: Includes category, brand, and de-
signer information.

b) Visual attributes: Automatically extracted from
product images using computer vision techniques.

¢) Human judgments: Includes crowd-sourced or
curated labels indicating style similarity.

This approach allows DeepStyle to understand nuanced
concepts like “bohemian,” “’business casual,” or “avant-
garde” that go beyond simple visual patterns. A user
could search for “elegant evening wear with subtle pat-
terns” and receive results that match the aesthetic intent,
not just items that happen to contain the query key-
words. The model demonstrated impressive cross-modal
retrieval capabilities. Users could upload an image of
a garment they like and find textually similar items, or
provide a text description and receive visually matching
results. Furthermore, DeepStyle could perform ’style
transfer” searches, where a user might ask for this dress
but in a more casual style” or “shoes similar to these
but more formal.” For the field of multimodal semantic
retrieval, DeepStyle highlighted how domain-specific
training and human-in-the-loop feedback could create
retrieval systems that understand subjective dimensions.
Its success in the fashion domain demonstrated the
commercial potential of semantic multimodal search for
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e-commerce platforms where style, taste, and aesthetic
appeal drive purchasing decisions. The research also
underscored the importance of building specialized em-
beddings that capture domain-specific semantics rather
than relying solely on general-purpose visual and textual
representations. This insight has influenced specialized
retrieval systems in other domains where subjective
attributes matter, such as interior design, art, and creative
content discovery.

Probabilistic Embeddings for Cross-Modal Retrieval
(2021 - Sanghyuk Chun et al. [10]) A profound
shift has entered the representation of embeddings in
multimodal retrieval systems. Rather than linking objects
to fixed positions in a semantic space, these models
describe objects as probability distributions-normally
represented as multivariate Gaussians-in the embedding
space. This probabilistic representation provides a math-
ematical framework to express uncertainty, something
that is highly beneficial when ambiguity or partial infor-
mation is present in multiple modalities. In traditional
embedding models, every image or text segment is
encoded as a single vector. However, this method does
not support uncertainty; hence, an imprecise image or
uncertain text is still mapped to some place in the
embedding space. Probabilistic embeddings overcome
this by representing each item as a distribution spec-
ified by its mean vector (representing the most likely
semantic location) and covariance matrix (representing
the uncertainty along different dimensions). The main
developments offered by this research include:

a) Uncertainty modeling: The model can represent
cases of ambiguity about an embedding. As an
example, an out-of-focus image would have a
“broader” distribution compared to an in-focus im-
age, whereas an imprecise text description would
have higher variance compared to an exact descrip-
tion.

b) Distribution matching: The method uses distri-
bution divergence metrics like Kullback-Leibler
divergence or Wasserstein distance as opposed to
standard Euclidean or cosine distances used with
point embeddings. This enables uncertainty to be
managed in the retrieval process, thereby improv-
ing result ranking efficiency.

¢) Calibrated Confidence: The confidence values
produced by the model represent the level of con-
fidence associated with the outcome of a retrieval
operation. As an example, to the query of ”dog on
a beach,” high-confidence outputs (representing a
narrow distribution) will be generated where there
is a strong and identifiable relationship, and low-
certainty outputs where there is a wider distribu-
tion.

d) Handling missing data: The model effectively
handles cases of missing information. When a
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modality is missing or weak (e.g., an image with-
out a corresponding caption), the model assigns
higher uncertainty to semantic aspects that are
typically supported by that particular modality.

In multimodal retrieval, probabilistic embeddings have
several advantages. First, they allow for a more natural
way of dealing with noise and uncertainty between
various modalities. Second, they enable a more precise
ranking mechanism by capturing different levels of
confidence. Third, they provide robustness to out-of-
distribution queries by properly modeling uncertainty,
rather than giving overconfident predictions. In practice,
this methodology supports increased user satisfaction by
distinguishing between definite and indefinite matches.
An embedding-based search mechanism can report to
the user, “"These results unequivocally correspond to
your query,” as opposed to, “These can or cannot corre-
spond; I am unsure,” providing clarity about degrees of
confidence. The research also showed that probabilistic
embeddings are strong in modeling the relationships
between different semantic dimensions. For example,
uncertainty about the presence of a ”beach” in an image
can be linked to uncertainty about “ocean” or sand,’
thus reflecting dominant semantic relationships. This
research greatly influenced subsequent studies related to
strong cross-modal retrieval and inspired approaches to
address issues of unreliable and partial information in
multimodal databases—a critical consideration in real-
world applications where access to clean and complete
information is not guaranteed.

CLIP (2021) The year 2021 introduced CLIP (Con-
trastive Language-Image Pretraining) to the world by
Radford et al. [11]. This work from OpenAl made a
huge difference in the field of multimodal understanding
and retrieval. Limitations of other methods, including
depending on limited categorised data and their inability
to understand new concepts without re-training, were
eliminated.

The main feature of CLIP is the way it draws on its
training methodology and size. Instead of the ImageNet-
like labeled datasets, the model was trained on 400 mil-
lion image-text pairs collected from the internet. Each
pair consists of images and their alt-text descriptions.
This allows for a wide variety of concepts compared to
traditional classification datasets.

CLIP employs a dual-encoder architecture with two
parallel neural networks:

a) Image encoder: A vision transformer (ViT) or a
modified ResNet that processes raw image pixels
into feature representations.

b) Text encoder: A transformer model that processes
text descriptions and converts them into embed-
dings in the same space as the image encoder.

Both encoders project their inputs into the same em-
bedding space, where the training objective is con-



trastive: matching image-text pairs are pulled together,
while non-matching pairs are pushed apart. This is
implemented using a symmetric cross-entropy loss that
maximizes the cosine similarity between embeddings of
corresponding image-text pairs while minimizing sim-
ilarity between non-matching pairs. What makes CLIP
revolutionary is its “zero-shot” transfer capability. After
pretraining, CLIP can perform classification or retrieval
tasks on completely new categories without any addi-
tional training. For example, if asked to classify images
into cats” and “dogs” (categories it wasn’t explicitly
trained on), CLIP can embed both the images and the
text labels ’cat” and ”dog,” then assign each image to the
label with the highest embedding similarity. This zero-
shot capability extends to complex queries. Users can
search for images using natural language descriptions
like a person standing on a mountain at sunset” or ’an
origami crane on a wooden table,” and CLIP will retrieve
relevant images even if those exact scenarios weren’t
part of the training data.

For semantic multimodal retrieval, CLIP represented a
quantum leap in several ways:

a) Open vocabulary: Unlike previous models con-
strained by fixed label sets, CLIP supports arbitrary
natural language queries, making it highly flexible
for real-world applications.

b) Compositional understanding: CLIP can reason
about combinations of concepts (e.g., “red car on
a snowy road”) thanks to its training on natural
image-text pairs from the web.

c) Robustness: Due to its diverse and large-scale
web-based training data, CLIP demonstrates strong
performance even under distribution shifts and
noisy inputs.

d) Versatility: CLIP supports a range of tasks such
as image-to-text retrieval, text-to-image retrieval,
and zero-shot classification, using the same unified
model.

e) Cultural knowledge: The model encodes general
world and cultural knowledge present in the web
data, allowing it to understand symbolic meanings,
visual metaphors, and contextual nuances.

The effects of CLIP are greater than academic research.
It has been implemented in various applications such as
image search engines, content moderation tools and Al
models like DALL-E. It showed that larger-scale con-
trastive learning on web-scale data can help in creating
powerful representations that link language and vision
semantically.

Being capable of “reading” pictures and “visualizing”
text made CLIP one of the most important develop-
ments in multimodal Al, paving the way for subsequent
research that prioritized scale, contrastive learning, and
zero-shot.

10) ALIGN (2021)- Jia et al. [12] from Google Research

presented ALIGN (A Large-scale ImaGe and Noisy
Text model), which obtained state-of-the-art results on a
variety of multimodal tasks at an unprecedented scale.
Despite its similarity to CLIP, it is distinguished by its
emphasis on numerous aspects, as well as its noisy web
data approach.

The most important aspect of ALIGN is its training
technique. Instead of filtering high-quality text-image
pairs, it takes the noise of web-scale data and makes
up for it with sheer quantity. The model was trained on
over one billion web-sourced images and their associated
alt text. This is approximately 2.5 times more data than
CLIP.

ALIGN’s architecture follows the dual-encoder ap-
proach:

a) Image encoder: An EfficientNet model is used
to process and extract visual features from image
data, offering a balance of efficiency and accuracy.

b) Text encoder: A BERT-based transformer encodes
textual descriptions into dense semantic embed-
dings that align with visual representations.

These encoders map images and text into a shared
embedding space where semantic similarity can be
measured. The training objective uses a contrastive
loss function that maximizes similarity between paired
images and texts while minimizing similarity between
unpaired examples. What makes ALIGN particularly
noteworthy is its approach to data quality. Web-scraped
alt-text is often noisy—it might be incomplete, contain
SEO keywords, or be only tangentially related to the
image content. Rather than extensively filtering this data,
ALIGN’s training procedure is designed to be robust to
noise through:

a) Momentum contrast: Utilizes a memory bank that
stores a large queue of negative samples to enhance
the effectiveness of contrastive learning.

b) Dual temperature scaling: Applies different tem-
perature parameters for image and text modalities
to better align the respective embedding distribu-
tions.

c) Batch normalization: Ensures training stability
by normalizing the input distributions, which is
especially important when dealing with noisy or
uncurated web data.

The results demonstrated that scale can indeed overcome
noise. ALIGN achieved state-of-the-art performance on
various zero-shot and transfer learning benchmarks,
confirming that massive training on noisy data can
outperform smaller but cleaner datasets. For semantic
and multimodal retrieval, ALIGN’s contributions are
significant:

a) Improved generalization: Exposure to a billion-
scale dataset enables the model to learn a wide
array of visual and linguistic patterns, making it
more capable of handling diverse inputs.
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b) Robustness to real-world variation: Training
on noisy and heterogeneous web data equips the
model to perform reliably in practical, unpre-
dictable search scenarios.

c) Multilingual capabilities: The presence of alt-text
in various languages allows the model to support
cross-lingual retrieval tasks, widening its usability.

d) Cultural and demographic breadth: The breadth
of data scraped from the web reflects a wide
range of cultural, ethnic, and geographic contexts,
increasing the model’s inclusivity and relevance.

ALIGN taught us all an important lesson about building
practical retrieval systems: It showed that embracing
web-scale data, noise and all, could lead to systems that
are more robust and more general than those built on
carefully curated small datasets, and this lesson has in-
fluenced later work on multimodal systems, encouraging
researchers to prioritize the scale and diversity of their
data over its cleanliness. ALIGN showed how “scaling
beats cleaning” when it comes to multimodal learning.
In doing so, it defines a way of making general-purpose
semantic embeddings that can support a wide range of
retrieval tasks across modalities

CLAP (2022) — In a study by Elizalde et al. [13],
the contrastive learning approach was extended to the
audio domain with CLAP (Contrastive Language-Audio
Pretraining). According to the study, vision-language
models had made substantial progress, and the audio-
language domain was often overlooked despite being
a crucial aspect of comprehensive multimodal systems.
CLAP is built on the same dual-encoder backbone as
CLIP, but switches out the image encoder for a dedicated
audio encoder:

a) Audio encoder: Processes audio spectrograms us-
ing either a Convolutional Neural Network (CNN)
or a transformer-based architecture to generate
feature embeddings.

b) Text encoder: Functions similarly to the CLIP text
encoder, transforming natural language descrip-
tions into semantic embeddings using a transformer
model.

The model is trained on pairs of audio clips and their
textual descriptions using contrastive learning. During
training, the system learns to maximize similarity be-
tween matching audio-text pairs while minimizing sim-
ilarity for non-matching pairs. This forces the model to
understand semantic relationships between sounds and
their linguistic descriptions. Training data for CLAP
includes diverse audio sources paired with captions:

a) Sound effect libraries with descriptions: Pre-
labeled sound files paired with textual annotations
about the type and nature of the sounds.

b) Music with genre labels and emotional tags:
Music clips labeled with metadata such as genre
(e.g., jazz, rock) and mood descriptors (e.g., happy,
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melancholic).

¢) Audiobooks with transcripts: Spoken word audio
aligned with exact text, useful for grounding audio
signals in structured language.

d) Environmental recordings with context descrip-
tions: Sounds from real-world environments (e.g.,
forests, cities) tagged with descriptive context.

e) Video soundtracks with captions or descrip-
tions: Audio extracted from videos, often accom-
panied by human-generated captions or descrip-
tions, enriching the semantic context.

The reason CLAP is so useful for multimodal retrieval
is because of it can fill in the gap between the linguistic
descriptions and the sound patterns. Users are able to
find sounds using their natural language search, such as
“children laughing at a playground,” “gentle rain on a
metal roof,” or “upbeat jazz with saxophone,” and not
have the words in the metadata. CLAP enables several
novel capabilities:

a) Cross-modal audio search: Allows users to lo-
cate audio clips that correspond to provided text
descriptions, for example, “rain falling on leaves”
or “children laughing.”

b) Zero-shot audio classification: Classify the audio
sample into the desired category even when the
model has never seen it during training.

c) Audio-to-text retrieval: An audio input is all that
is needed, and this retrieves the most necessary text
descriptions from a database.

d) Semantic audio similarity: Discovers other
sounds that are similar in both acoustics and con-
ceptually to an input, facilitating exploratory audio
search and clustering.

In comprehensive multimodal systems, CLAP acts as a
vital puzzle piece. Combining with other models like
CLIP, it brings users multisensory search capabilities
across text, audio, and images. As a result, if a person
were to search for something like a “thunderstorm,’
they would be able to see images of dark clouds and
lightning and listen to the sounds of raining and thunder.
The study has shown that language can be utilized as
a universal bridge across sensory modalities. The text
provides a common semantic space, where it is possible
to align the visual concepts from CLIP and acoustic
patterns from CLAP; thus, the cross-modal retrieval is
performed across the three domains. The development
of CLAP allowed the invention of different contrastive
learning approaches to other pairs of modalities, which
suggested a general pattern for building a comprehen-
sive multimodal understanding. Its success encouraged
further research into other combinations of modality and
reinforced the value of web-scale contrastive learning for
semantic alignment across different forms of data.

BLIP (2022) — Li et al. [14] introduced BLIP (Boot-
strapped Language-Image Pre-training), which repre-



sents an advancement in multimodal learning as it
amalgamated language-image matching with image cap-
tioning in a bidirectional relationship. CLIP is largely
inclined towards matching visual and textual content
as they are already paired, unlike BLIP, which can
generate text to describe visuals. The main innovation
of BLIP is the bootstrapping mechanism, creating an
interdependence between understanding and generation:

a) Image-caption matching: The model initially
learns to associate images with their corresponding
captions, aligning their semantic representations.

b) Caption generation: Once trained on matching,
the model is used to generate new captions for
images, leveraging its learned visual-language un-
derstanding.

c) Caption filtering: Generated captions are assessed
and filtered, keeping only the high-quality and se-
mantically rich ones that best describe the images.

d) Self-training: The filtered, high-quality captions
are used as pseudo-labeled data to further train the
model in a self-supervised fashion.

e) Model enhancement: This bootstrapped cycle im-
proves both the model’s ability to match and to
generate meaningful image-text pairs.

This bootstrapping approach addresses a critical limi-
tation of previous systems: the scarcity of high-quality
image-caption pairs. By generating its own training data,
BLIP effectively expands its knowledge without requir-
ing additional human annotation. BLIP’s architecture
consists of:

a) Image encoder: A vision transformer (ViT) en-
codes visual features from input images into rich
embeddings.

b) Text encoder: A transformer-based module that
encodes textual descriptions, enabling semantic
comparison with image embeddings.

c) Text decoder: A transformer decoder generates
natural language captions for a given image, based
on the fused multimodal context.

d) Multimodal fusion layers: These layers integrate
the image and text embeddings to form a joint
representation space suitable for both retrieval and
caption generation tasks.

The model is trained with multiple objectives:

a) Image-text contrastive learning: Inspired by
CLIP, this objective pulls matched image-caption
pairs closer and pushes unmatched pairs apart in
the embedding space.

b) Image-text matching: A binary classification task
to determine whether a given caption is the correct
match for an image.

c) Language modeling: The model is trained to gen-
erate contextually relevant and coherent captions
for images using autoregressive language model-
ing.
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d) Caption filtering: An auxiliary module learns to
evaluate the quality of generated captions and filter
out those that are uninformative or incorrect.

For semantic multimodal retrieval, BLIP offers several
advantages:

a) Richer semantic representations: By jointly opti-
mizing contrastive, matching, and generative tasks,
the model learns more nuanced and deeply con-
nected visual-linguistic embeddings.

b) Improved zero-shot capabilities: The generative
pretraining equips the model with the ability to
generalize to unseen image-text concepts without
needing specific labels.

c) Explainable retrieval: Since BLIP can gen-
erate captions for images, it provides human-
understandable rationales for why an image might
be relevant to a given text query.

d) Query expansion: The captioning ability allows
the model to create alternative phrasings or descrip-
tions of queries, increasing the recall and relevance
in retrieval tasks.

BLIP also introduced an effective captioning filtering
mechanism that distinguishes synthetic captions by their
quality. This “capQualifier” component helps identify
which generated captions are most useful for boot-
strapping, preferring descriptive, accurate, and com-
prehensive captions over generic or inaccurate ones.
Experiments showed that BLIP outperformed previous
models on image-text retrieval benchmarks while using a
more efficient architecture. The bootstrapping approach
proved particularly valuable for improving performance
on zero-shot tasks where the model encounters new
concepts not explicitly covered in its original training
data. BLIP’s success demonstrated the value of combin-
ing contrastive and generative approaches in multimodal
learning. By allowing the model to both understand
existing associations and create new ones, BLIP rep-
resented an important step toward more comprehensive
semantic understanding across modalities. This approach
influenced subsequent work on multimodal foundation
models that combine multiple learning paradigms to
achieve more robust and versatile representations.

BLIP-2: Bootstrapping Language-Image Pre-
training with Frozen Image Encoders and Large
Language Models - Li et al. [15] Building on
the innovations of BLIP-2 that introduced a new
architecture focusing on modularity, efficiency, and
leveraging pre-trained models, BLIP set a complete
paradigm for both visual-semantic understanding and
caption generation. In comparison, BLIP-2 is a major
upgrade attained by integrating large language models
(LLMs) and vision encoders through a simplified but
robust intermediary. The main innovation of BLIP-2
is its Q-Former (Query Transformer) model, which is
used as an intermediate between various modalities.



Instead of using one integrated model, BLIP-2 uses a
more decomposed framework:

a) Frozen vision encoder: A pre-trained vision trans-
former (ViT) that processes images.

b) Q-Former: A transformer-based model that ex-
tracts relevant visual information through learnable
queries.

c) Frozen language model: A pre-trained LLM that
handles text generation and understanding.

This architecture offers several advantages:

a) Parameter efficiency: By keeping the vision and
language models frozen, training focuses only on
the Q-Former.

b) Leverage existing specialists: Uses the best avail-
able pre-trained models for each modality.

c) Flexibility: Can swap in different vision or lan-
guage models without retraining the entire system.

The Q-Former functions as an intelligent interface that
translates visual information into a format that language
models can understand. It does this through a set of
learnable query vectors that attend to the image features,
extracting the most relevant visual information based on
the task at hand. BLIP-2 is trained in two stages:

a) Image-text contrastive learning: The Q-Former
learns to align visual and textual representations.

b) Visual-grounded language learning: The Q-
Former learns to generate inputs for the language
model that enable it to reason about images.

For semantic multimodal retrieval, BLIP-2 represents a
significant advancement in several ways:

a) Complex reasoning: By connecting to LLMs,
BLIP-2 can perform sophisticated reasoning about
visual content.

b) Detailed understanding: It can answer specific
questions about images rather than just retrieving
based on overall similarity.

c) Zero-shot capabilities: The connection to LLMs
enables handling novel concepts and instructions.

d) Efficient indexing: The Q-Former outputs can be
indexed for fast retrieval while maintaining rich
semantic representation.

BLIP-2 shows strong performance on various tasks rang-
ing from visual question-answering and image caption-
ing to visual reasoning. It has the capacity, for example,
to answer specific questions about images like ”"What
safety gear is not present on this building construction
site?” or "What cooking technique is shown in the
photo?” In retrieval systems, this implies progressing
from shallow-matching methods to support retrieval
based on deeper understanding. Users will be able to
frame sophisticated questions like “Retrieve pictures
showing persons who are breaking safety regulations”
or “Supply examples of fusion foods that combine
Mediterranean and Asian ingredients,” with the design of
BLIP-2 supporting the acquisition of relevant responses
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by reasoning instead of keyword or visual pattern recall.
BLIP-2 architecture has considerably shaped subsequent
studies, and its approach has determined how specialized
modules are integrated instead of building large models
from the very beginning. This approach has proven
highly effective, particularly with language models that
grow in size and capacity, making it possible for visual
systems to leverage such developments efficiently.
Boon: A Neural Search Engine for Cross-Modal
Information Retrieval (2023) — In this paper, Gong
et al. [16]] (2023) introduced a practical search model
called Boon. This paper is distinct from other mul-
timodal models because it was specially constructed
for use in shopping search scenarios where different
modalities are often required to retrieve all necessary
relevant information. Boon’s major innovation is its
heterogeneous information integration approach. Most
e-commerce platforms keep product details in multiple
formats:

a) Structured metadata: This involves categories, at-
tributes, and technical specifications that are stored
in well-defined database fields, which are important
inputs for structured search and filtering.

b) Images: Numerous images of merchandise taken
from various viewpoints, convey the appearance of
a product in its totality, assisting in visual searches
and user decisions.

c) Text descriptions: Usage of marketing copy, the
list of features, and data sheets provides detailed
information on each product.

Conventional models usually consider these to be two
distinct indexes; however, Boon compresses them into
a uniform representation that reflects both semantic
correlations and layout data. Boon’s architecture consists
of several specialized encoders:

a) Image encoder: A convolutional neural network
(CNN) processes product images to extract rich
visual features relevant to the product’s appearance,
such as shape, color, and texture.

b) Text encoder: Transformer-based models are used
to process natural language text such as product
descriptions and user reviews into embeddings that
capture their semantic meaning.

c) Metadata encoder: Graph neural networks
(GNNs) encode structured product attributes (e.g.,
size, brand, category) by modeling their interrela-
tionships.

d) Query understanding module: This component
interprets the user’s intent across multiple modali-
ties and reformulates it into a structured represen-
tation suitable for retrieval.

These encoders feed into a fusion mechanism that aligns
the different representations into a common semantic
space while preserving their unique characteristics. This
fusion is learned through multiple training objectives:



15)

a) Relevance matching: Determines the semantic
and visual alignment between user queries and
product entries to ensure accurate retrieval.

b) Category and attribute prediction: Predicts prod-
uct categories and attributes based on multimodal
input to enhance search ranking and filtering.

c) Image-text alignment: Learns to map correspond-
ing images and descriptions to a shared embedding
space, facilitating cross-modal retrieval.

d) Behavioral matching: Leverages historical click
and purchase data to model the relationship be-
tween queries and user engagement, improving
personalization.

What makes Boon particularly valuable for practical ap-
plications is its ability to handle flexible query formats.
Users can search using:

a) Text-only queries: Traditional keyword-based
search where users enter natural language queries
or keywords.

b) Image-only queries: Visual search using an image
as the query input, commonly employed to find
similar-looking products.

c) Combined queries: Users provide an image and
refine their intent using text (e.g., “like this but in
red”), enabling a more expressive search experi-
ence.

d) Faceted queries: Combine natural language or
visual input with structured filters (e.g., size, brand,
color) for more precise search outcomes.

The system also introduces an attention-based cross-
modal aggregation mechanism that weighs different
modalities based on query context. For instance, when
a user searches for “blue dress with lace trim,” the
system heavily weights color attributes for “blue” but
emphasizes visual texture features for “lace trim.” In
real-world use, Boon takes advantage of smart indexing
methods to bring up millions of products in a fraction
of a second, even though the product representations
are varied. This includes the hybrid embedding space
optimized for finding nearest neighbors. Boon shows
how educational improvements on multimodal studying
may be absorbed in commercial search situations where
data is a combination. In particular, its achievements in
product search point to the prospect of adopting it in
other areas with blended data, such as real estate, job
applications, or content recommendation systems. The
study explains the significance of combining behavioral
indicators (clicks, acquisitions) in addition to material
features, indicating that user data may serve as an
implicit signal that helps align various modalities in
meaningful ways.

ImageBind (2023) —Girdhar et al. [17] from MetaAl
Research introduced ImageBind, an approach that rep-
resents a significant advancement in multimodal learning
by expanding beyond the traditional vision-language

pairing to include multiple modalities such as images,
text, audio, depth, thermal, and IMU data. ImageBind
is an ambitious approach that aims to create a unified
embedding space where all the modalities can be seman-
tically aligned.

The main thought about ImageBind is that many sen-
sory streams reveal the same information. A dog, for
example, can be seen, heard, felt by heat, exists in the
space, and moves in a certain way. Other systems of
multimodal binding link just two concepts (like text and
images), but ImageBind does both.

The innovative aspect of ImageBind is in the methodol-
ogy adopted for its training. Creating datasets where all
six modalities are aligned would be extremely expensive
and difficult. So, the authors employed a clever trick: if
modality A (images) can be aligned with modality B
(text), and also with modality C (audio), then B and
C can be considered as aligned with each other, since
they are both aligned with modality A. This “’binding
through images” approach allows ImageBind to create
a unified embedding space without requiring explicit
pairings between all modalities. The model is trained
using only naturally occurring pairs:

a) Images paired with text captions: Traditional
image-text datasets where images are annotated
with human-written or automatically generated de-
scriptions.

b) Images paired with audio: Sound clips recorded
from the scene associated with the image, such as
environmental sounds or spoken descriptions.

c) Images paired with depth maps: Structural depth
information is aligned with each image, capturing
3D spatial relationships and geometric context.

d) Images paired with thermal imagery: Thermal
data captures the temperature distribution of ob-
jects in the image, offering insight into material
properties or human activity.

e) Images paired with motion data: Dynamic move-
ment patterns (e.g., optical flow or pose tracking)
associated with the scene are recorded, providing
temporal cues.

Through contrastive learning on these paired data
sources, all six modalities become aligned in a common
embedding space. This means that a concept like “ocean
waves” can be represented similarly whether it comes
from a photograph, a text description, a wave sound
recording, a depth map of water, a thermal image
showing temperature gradients, or motion data cap-
turing rhythmic movements. For multimodal retrieval,
ImageBind enables unprecedented cross-modal search
capabilities:

a) Audio-to-image search: Enables retrieval of rel-
evant images based on sound input. For instance,
the sound of waves could return photos of beaches
or oceans.
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b) Depth-to-text search: Users can retrieve descrip-
tive text based on structural and spatial features,
such as identifying a room layout or object shapes
from 3D depth data.

c¢) Motion-to-thermal search: Allows identification
of thermal imagery associated with specific mo-
tion patterns, like detecting warm footprints from
walking motion data.

d) Any-to-any retrieval: Supports flexible cross-
modal search across all six modalities. For ex-
ample, searching with a thermal image to find a
related caption or using text to retrieve motion data.

The experiment was conducted to determine how well
ImageBind could find and retrieve various cross-modal
texts between modalities, which were not seen or paired
during the experiments. All the texts retrieved when the
model was subjected to, for example, ‘zero-shot cross-
modal retrieval between modalities’ which were never
explicitly paired were considered during this test. For
example, the model was capable of matching audio data
and text descriptions through shared characteristics This
project has huge potential for systems that search for
and retrieve meaning. It shows that systems that handle
different types of information are possible - users could
ask questions in different ways and be given answers in
all types of forms. For example, a person might sing part
of a song to find a video of a similar song, or send in
a photo of a mountain to find a drawing of a mountain
and a written description of it. ImageBind also shows
how different modes of communication can support one
another, giving us more comprehensive ideas than just
one form of communication could offer. This mirrors
how real people perceive things and develop ideas. In
the realm of multimodal retrieval, ImageBind opens up
future possibilities for systems that can fluidly con-
nect numerous modalities due to their shared semantic
links, thereby bringing about more natural and versatile
pathways for users to discover and retrieve information
across an ever-growing array of digital media.
Unified-I0O (2023) — Lu et al. [18]] has introduced a
remarkable advancement that has revolutionized the way
Al tasks across different modalities are handled. It is
such that it is a significant advancement over previous
works that were developed specifically for certain tasks
(retrieval, classification, generation, etc.) or the specific
pairs of modalities. Moreover, it is general-purpose,
hence treating all the tasks as sequence-to-sequence
transformations.

The main concept of Unified-IO that makes all the
difference is simple and straightforward. This system
was developed based on the principles of several popular
text-based language models. For instance, the developers
used the TS model that stands for Text-to-Text Transfer
Transformer. This model works with text data only, but
Unified-10 expands this concept beyond text to incorpo-
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rate multimodal and image data. This approach is based
on the idea that all tasks have a shared nature—they take
some kind of input Unified-1O’s architecture consists of:

a) Unified encoder: Processes input sequences that
may include text, images, or a combination of both.
This encoder handles multimodal fusion from the
very beginning.

b) Unified decoder: Generates output sequences that
can be purely text, purely images, or multimodal
sequences containing both.

c) Task specification: A text prompt provided along-
side the input to define the desired operation,
such as retrieval, classification, or generation. This
enables prompt-driven flexibility.

This architecture uses a shared vocabulary and repre-
sentation space across modalities, allowing the model
to process text and images within the same framework.
Images are treated as sequences of patches, similar to
how text is processed as sequences of tokens. What
makes Unified-IO particularly powerful for retrieval is
its ability to handle multiple retrieval paradigms within
a single model:

a) Text-to-image retrieval: Given a description like
“Find images that show a dog playing in the snow,”
the model retrieves matching visual content.

b) Image-to-text retrieval: The model takes an im-
age and generates descriptive text such as “A
woman holding an umbrella during a rainstorm.”

¢) Multimodal-to-multimodal retrieval: Combines
image and text input to find similar content, e.g.,
“Find scenes like this image and caption.”

d) Structured data extraction: Given an image (e.g.,
a product photo), the model can extract structured
fields such as product name, price, and brand.

The model is trained on a diverse set of tasks including:

a) Image captioning

b) Visual question answering

c) Image classification
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d) Object detection and segmentation
e) Visual reasoning

f) Text summarization

g) Text-to-image generation

h) Image editing and manipulation

Unified-IO acquires a deep understanding of semantic
relationships across domains by mastering all of these
tasks at the same time. This multi-task learning approach
requires the model to develop general-purpose represen-
tations that embody the true meaning of information,
rather than being restricted to specific use-cases. For
semantic retrieval specifically, Unified-1O offers several
advantages:

a) Flexibility: A single model supports many types
of retrieval and generation tasks across different
modalities.

b) Reasoning-enhanced retrieval: The model is ca-
pable of inserting reasoning steps between query
interpretation and retrieval, improving semantic
alignment.

c) Explanations: It can generate natural language
explanations that justify why a particular item was
retrieved or generated.

d) Zero-shot adaptation: The model generalizes to
new retrieval tasks without needing task-specific
retraining, thanks to prompt-driven conditioning.

The architecture also allows for compositional queries
that combine retrieval with other operations. For ex-
ample, a user might request “Find images of beaches,
then describe the weather conditions in each,” and
Unified-IO would handle both the retrieval and analysis
steps. Experiments showed that Unified-IO achieved
strong performance across 20 diverse vision and lan-
guage tasks despite using a single model rather than
specialized architectures for each task. This demon-
strated the power of the unified sequence-to-sequence
approach for multimodal understanding. For the field
of multimodal retrieval, Unified-IO points toward more
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integrated systems where retrieval is not isolated from
other operations but part of a continuous spectrum of
ways to transform and interact with information. Its
task-agnostic philosophy suggests that future retrieval
systems might adapt more fluidly to user needs, handling
traditional search alongside generation, editing, analysis,
and reasoning as part of a seamless interaction paradigm.
Universal Vision-Language Dense Retrieval (2023) —
Liu et al. [19], which introduced a framework for Uni-
versal Vision-Language Dense Retrieval, which aimed
to solve a critical problem in multimodal search: how to
construct a general-purpose retrieval model that could
work well on diverse benchmarks and datasets without
extensive fine-tuning on many tasks.

The main innovation in this work is a training technique
that combines three major elements:

a) Hard negative mining: Using challenging nega-
tive examples that are semantically related but do
not match.

b) Domain adaptation techniques: Methods to gen-
eralize across different data distributions.

c) Contrastive representation learning: Learning
discriminative embeddings that maintain semantic
relationships.

The architecture follows the dual-encoder paradigm
common in dense retrieval:

a) A vision encoder processes images into fixed-
length vectors.

b) A text encoder processes queries into vectors of
the same dimensionality.

c) Similarity between these vectors determines re-
trieval ranking.

What distinguishes this approach is its training proce-
dure, which incorporates:

In-batch negatives with temperature scaling: Instead
of using only explicitly defined negative examples, this
method treats all other examples in a training batch
as negatives. The distinction between positives and
negatives is controlled by the temperature parameter,
which must be used carefully to avoid underfitting or
overfitting.

Cross-dataset mixing: When training, this system pro-
cesses groups of examples that are taken from different
sets of data, where each set can pertain to a different
domain, such as various categories of images or other
forms of data. As multiple types of information are
presented to the system, it can learn certain features that
do not change between the

Momentum contrast with large queues: The technique
functions with the assistance of a memory bank that
is used to store past encoded samples to provide a
more extensive contrast pool size without a need to
alter the batch size. This primarily helps the model to
determine the difference, no matter how small, between
semantically related features.
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Adaptive margin loss: The similarity threshold is deter-
mined dynamically by the complexity of the examples,
which makes it possible to strictly distinguish between
simple cases and relax this requirement for difficult
cases.

For multimodal retrieval, this universal approach offers
several practical advantages:

a) Deployment efficiency: A single model handles
multiple retrieval scenarios without the need for
separate specialized models.

b) Zero-shot capabilities: The model performs rea-
sonably well on new datasets without additional
fine-tuning.

c) Resource optimization: Computes and stores a
single embedding per item for efficient indexing
and retrieval.

d) Consistency: Employs the same similarity measure
across diverse content types and query formats.

Tests unveiled that this common search engine has
the competence to outdo or equal specialized models
on several yardsticks, even on MSCOCO, Flickr30K,
and Visual Genome. A point of note is the machine’s
brilliance in switching to unseen databases and still
retaining the same high quality. The research work
similarly launched a thoroughgoing analysis of what
makes retrieval “universal”’, unveiling essential factors,
just like embedding dimensionality, training data vari-
ety, and optimizing strategies that cause cross-domain
generalization. This work is a significant milestone in
the development of practical and functional multimodal
retrieval systems. Instead of having to design a new
system every time you come across a new domain, a
universal retrieval system might be enough. The versa-
tility of this universal model is particularly beneficial
in real-world applications due to the constant need to
perform additional operations.

Multimodal Semantic Retrieval for Product Search
(2025) — Liu et al. [20] developed a specialized mul-
timodal retrieval system that focuses on the unique
challenges of e-commerce product search. While shar-
ing some goals with Boon, this work places particular
emphasis on user behavior signals and personalization
aspects of product retrieval. The core insight of this
research is that product search differs fundamentally
from general information retrieval in several ways:

a) Intent diversity: Users may interact with the sys-
tem for different reasons—browsing casually, com-
paring options, or intending to purchase—which
affects how relevance should be interpreted.

b) Preference subjectivity: What is relevant or at-
tractive to one user may not be the same for
another, as personal taste, brand loyalty, and style
preferences vary greatly.

¢) Multimodal decision factors: Users make deci-
sions based on a combination of visual appear-

ance, textual specs, pricing, and social proof (like
reviews), necessitating holistic modeling.

d) Session context: The user’s previous actions
within a session—Iike recently viewed or clicked
products—can dramatically influence what is
deemed relevant in subsequent queries.

To address these challenges, the researchers designed a
dual-encoder architecture with several innovations:

a) Behavioral embedding layer: This module cap-
tures user-specific preferences by encoding histori-
cal interactions, such as previous clicks, purchases,
and browsing behavior.

b) Visual attention module: Identifies and focuses
on the most relevant parts of product images (e.g.,
logos, color patterns) based on the user’s current
query and interest signals.

c) Preference modeling: Learns a user profile from
historical behavior, helping tailor search results
toward an individual’s unique taste, brand affinity,
and stylistic preferences.

d) Multi-task learning: Trains the model simulta-
neously on multiple tasks—such as click-through
rate prediction, purchase likelihood, and general
relevance—to encourage robust and comprehensive
personalization.

The training methodology combines multiple signals:

a) Click data: Indicates the user’s initial interest and
serves as a weak signal for relevance.

b) Purchase data: Represents strong implicit feed-
back, indicating that the product met user expecta-
tions in multiple dimensions.

¢) Browse time: Longer engagement time often cor-
relates with greater user interest or consideration.

d) Add-to-cart actions: Suggests serious purchase
intent and serves as a midpoint between interest
and conversion.

e) Product-to-product co-views: If users commonly
view certain products together, it implies perceived
similarity and can inform recommendations and
related-product retrieval.

What distinguishes this work is its holistic approach
to relevance. Rather than treating relevance as a fixed
property of query-item pairs, it models relevance as a
function of:

a) Query content: The semantics of the user’s query
provide a starting point for determining relevance,
especially in natural language input.

b) Product features (visual and textual): Visual
cues (like color, shape) and textual information
(like brand, description) are matched against the
user’s preferences.

c) User preferences: Derived from long-term behav-
ior and profile data, preferences help personalize
results for recurring users.



d) Session context: Incorporates immediate actions
(clicks, views) to adapt relevance dynamically dur-
ing the same search session.

e) Stage in the purchase journey: Early-stage users
may be exploring broadly, while late-stage users
(who’ve added to cart or spent time comparing)
need more targeted and decision-supportive results.

In the broad realm of multimodal retrieval studies, this
study showcases the role played by behavioral cues in
bridging the gap between different modalities. Whenever
a user clicks upon a product after a particular query, it
suggests that there is a semantic connection between
the query terms and the product image, which can
help the model learn about cross-modal associations.
The system brings in a self-adjusting fusion mecha-
nism that gages various modalities based on technology
and user history. For instance, for searches such as
”red dress,” the fusion would lean more on the visual
element as against searches like “waterproof camera,’
where other specification elements are scrutinized to a
greater extent. Research has revealed that including the
behavior of users has a significant impact on cross-
model retrieval optimization compared to the use of
content-based algorithms. The result was better, not
only maximizing the user’s perceived beliefs. This work
underlines the importance of expanding the focus of
multimedia retrieval systems from content understanding
to the incorporation of user intent and preferences,
particularly in cases where subjective factors play a
role in determining relevance. Its results are relevant for
personalizing content recommendations and discovery
in various sectors, including content recommendations,
personalized learning resources.

IV. DISCUSSION

The path of study in semantic and multimodal information
retrieval shows a rich tapestry of changing ideas, techniques,
and uses. Spanning more than a decade, from basic studies
like DeViSE to modern large-scale systems like BLIP-2 and
ImageBind, the 18 research papers previously covered. This
part looks at the links between these works critically, noting
common themes, contrasting approaches, and investigating
how they complement, diverge from, or build upon one an-
other. The aim is to highlight not only personal contributions
but also how these combine to influence the larger scene of
semantic and multimodal retrieval.

A. The Rise of Contrastive Learning in Multimodal Retrieval:
From CLIP to BLIP-2

By allowing strong alignment between various modali-
ties—especially text and vision—without demanding fine-
grained supervision, the arrival of contrastive learning funda-
mentally changed multimodal information retrieval. A lineage
of models including CLIP (2021), ALIGN (2021), BLIP
(2022), and BLIP-2 (2023) best illustrates this change. Al-
though they all have a common motif of projecting text and

image data into a shared embedding space, their designs, train-
ing techniques, and intended applications expose significant
variations.

CLIP pioneered the dual-encoder contrastive paradigm at
web scale. It trained a text encoder and an image encoder
independently using a sizable corpus of noisy image-text pairs
that were collected from the internet, aligning their outputs
using a contrastive loss. This method was scalable and elegant,
allowing open-vocabulary image search and zero-shot image
categorization without the need for task-specific fine-tuning.
The model’s adaptability led to a surge in related studies.

The same dual-encoder methodology was used by Google
Research’s ALIGN, which was unveiled that same year but
trained on more than a billion image-text pairs. ALIGN
accepted the noise and depended on the large volume of data
and strong training objectives to generalize, whereas CLIP
used some filtering of its web data to ensure quality. This
method supported the idea that noise can be reduced by scale,
a lesson that informed later multimodal models.

BLIP marked a small but crucial development. Instead
than depending exclusively on contrastive objectives, it added
caption creation and self-training into its learning process.
Because of this, BLIP was a hybrid system that could produce
and comprehend natural language. It was able to bootstrap
high-quality image-caption pairs through its self-training loop,
which enhanced semantic grounding and made tasks like
captioning and visual question responding possible in addition
to retrieval. This comprehensive method expanded the use of
multimodal models beyond retrieval to include generation and
reasoning.

BLIP-2 extended this concept with an architectural inno-
vation—the Q-Former, a learnable intermediary module that
connects a frozen vision encoder to a frozen large language
model (LLM). This modular design reflects a major trend in
contemporary Al: leveraging the strengths of independently
trained foundation models through lightweight bridges. BLIP-
2’s ability to perform visual reasoning, answer open-ended
questions about images, and generate coherent natural lan-
guage outputs without training a monolithic end-to-end model
highlights the power of modularity and pretraining synergy.
It also marks a shift from alignment (CLIP, ALIGN) to
interpretation and reasoning (BLIP-2).

In comparing these models, several key distinctions emerge:

1) Training paradigm: CLIP and ALIGN focus on align-
ment through contrastive loss; BLIP incorporates gener-
ative objectives; BLIP-2 introduces modular fusion with
LLM:s.

2) Architecture: Dual encoder (CLIP, ALIGN), uni-
fied encoder-decoder (BLIP), modular vision-language
bridge (BLIP-2).

3) Capabilities: CLIP and ALIGN excel at open-
vocabulary retrieval; BLIP and BLIP-2 add generation,
reasoning, and VQA.

4) Scalability: ALIGN emphasizes scale and robustness
to noise; BLIP and BLIP-2 emphasize data efficiency
through self-training and modularity.



Together, these models trace the arc of multimodal Al from
alignment to understanding to reasoning, each pushing the
envelope of what retrieval systems can achieve.

TABLE I
LARGE-SCALE CONTRASTIVE MODELS COMPARISON
Feature CLIP ALIGN BLIP BLIP-2
(2021) (2021) (2022) (2023)
Architecture Dual Dual Encoder- Modular
encoder encoder decoder (ViT +
ViT + (Efficient- Q-Former +
Text) Net + LLM)
BERT)
Training 400M web 1B web Filtered +  Bootstrapped
Data pairs pairs generated + frozen
LLM
Objectives  Contrastive  Contrastive  Contrastive  Contrastive
+ + reasoning
generation  +
generation
Zero-shot Yes Yes Yes Yes
Generation  No No Yes Yes
Reasoning  No No Basic Yes
Strengths Simplicity ~ Scale Generative ~ Modular
reasoning

B. Beyond Point Embeddings: Polysemy, Uncertainty, and
Contextual Nuance

Meaning is at the heart of semantic retrieval. However,
meaning is rarely solitary or fixed, particularly in perception
and natural language. By going beyond the presumption that
an input corresponds to a single point in the embedding
space, two works—Polysemous Visual-Semantic Embed-
dings (2019) and Probabilistic Embeddings for Cross-
Modal Retrieval (2021)—address this difficulty directly.

The problem of polysemy, in which a single word can
have several meanings depending on context, is addressed in
Song et al. (Polysemous VSE). They suggest a technique in
which words are stored into several sense-specific embeddings
rather than into a single vector. Which sense is relevant
depends on the situation, whether it be visual or written. This
method makes fine-grained disambiguation possible. An image
of a riverbank, for instance, will be more in line with the
“riverside” meaning of “bank,” not the financial

In contrast, Chun et al. use a probabilistic approach,
describing every item in the embedding space as a mul-
tivariate Gaussian. A crisp, well-annotated sample has a
sharper, more confident distribution, whereas a hazy or
ambiguous image is represented with a broader distribu-
tion thanks to this innovation, which allows the model
to communicate uncertainty. Thus, retrieval is no longer
just about comparing vectors but also about comparing
distributions.

Although they do so from distinct perspectives—one by dis-
crete multiplicity, the other by continuous uncertainty—both
strategies seek to represent contextual ambiguity and confi-
dence. Crucially, both improve semantic richness, laying the

groundwork for systems that are not just accurate but also
truthful about their accuracy—a crucial component for reliable
retrieval in high-stakes fields like law or medicine.

TABLE I
DISAMBIGUATION AND UNCERTAINTY MODELS

Feature Polysemous VSE Probabilistic
(2019) Embeddings (2021)

Focus Word sense Uncertainty
disambiguation modeling

Method Multi-sense Gaussian
embeddings distributions

Disambiguation Visual/text context Variance-based

Strength Fine-grained Confidence-aware
matching

Use Case Polysemous queries ~ Noisy/missing data

C. Cross-Modal Transformers and Unified Representations

The emergence of transformer architectures catalyzed the
development of joint multimodal processing systems, moving
beyond late fusion of modality-specific features to deep, shared
understanding. Early in this trend was VisualBERT (2019),
which fused image region features and word tokens into a
shared transformer sequence. This allowed for cross-modal
self-attention, enabling the model to learn rich relationships
such as “this object is the subject of that caption.”

Unified-IO (2023) took this one step further by propos-
ing a task-agnostic, sequence-to-sequence framework that
handles a wide variety of inputs (text, images) and outputs
(text, classification labels, bounding boxes). All tasks are cast
as sequence transformations, inspired by T5’s “text-to-text”
format. The model doesn’t just retrieve or classify—it can
describe, reason, detect, and explain. Unified-IO embodies
a vision of multimodal generality, where retrieval is not a
distinct task but one capability among many in a unified
generative system.

ImageBind (2023), from Meta, offers a more radical uni-
fication—not of tasks, but of modalities. It simultaneously
embeds six modalities (image, text, audio, depth, thermal,
motion) into a single space. The innovation lies in its training
strategy: it does not require all modalities to be seen together.
Instead, it uses images as a semantic pivot, binding other
modalities indirectly. This means that sound can be linked to
text via shared image contexts, even if the model never saw
sound-text pairs directly.

Together, these three models—VisualBERT, Unified-10,
ImageBind—form a compelling triad:

1) VisualBERT: Early cross-modal attention; focuses on

text and vision.

2) Unified-10: Task-unified, transformer-based reasoning;

general-purpose.

3) ImageBind: Modality-unified, contrastive learning; scal-

able to sensory data.

They collectively mark the transition from retrieving in-
formation to reasoning across modalities, and ultimately to
perceiving and acting across sensory experiences.



TABLE III
UNIFIED AND TRANSFORMER-BASED MODELS

Feature VisualBERT Unified-10 ImageBind
(2019) (2023) (2023)

Input Image+Text Image+Text 6 modalities

Modalities

Architecture Joint Seg-to-seq Contrastive
transformer

Task Scope Retrieval, Generation Any-to-any
VQA

Objective Masked Multi-task Contrastive
modeling

Strengths Cross-attention  Flexibility Modality

scaling

D. Domain Specialization and Real-World Applications

General-purpose models are powerful, but domain-specific
applications demand tailored solutions. DeepStyle models
subjective fashion styles using crowd data. Boon integrates
structured metadata and behavior for e-commerce retrieval.
The 2025 multimodal product search system introduces
adaptive fusion and personalized ranking.

TABLE IV
DOMAIN-SPECIFIC SYSTEMS

synthesis—between structured knowledge and unstructured
perception, between logic and learning.

V. CONCLUSION

The evolution of semantic and multimodal information
retrieval has been marked by three parallel expansions: of
scale, of modality, and of capability. Models have grown
from small, task-specific systems to massive, general-purpose
engines capable of zero-shot reasoning across text, image, and
sound. Architectures have shifted from late fusion pipelines to
joint transformer backbones and modular pretraining strate-
gies. Most importantly, the definition of retrieval itself has
changed—from finding similar items to understanding, inter-
preting, and explaining across modalities.

Yet challenges remain. Questions of interpretability, bias,
energy consumption, and fairness loom large. Moreover, as
systems like ImageBind promise “any-to-any” retrieval, new
questions emerge: How do we evaluate such models? How
do we design interfaces that allow users to express complex
cross-modal intents?

Nevertheless, the field has moved decisively toward a future
where semantic understanding is not modality-specific, but
unified, robust, and grounded in rich embeddings shaped by
both data and human context. The works surveyed here do
not merely contribute individual innovations—they form a
collective foundation for the next generation of information

Feature DeepStyle Boon (2023)  Product retrieval systems: systems that can see, hear, read, reason—and
(2019) Search (2025)  ultimately, understand.

Domain Fashion E-commerce E-commerce
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