Optimizing ImageBind:

Enhancing Multimodal

Embedding Models

Abstract—ImageBind has proven to be a powerful model
that generates unified embeddings across different modalities,
providing a great approach to cross-modal understanding. In
this work, we experiment with architectural and post-training
optimizations for improving the resource usage and ease of
use of ImageBind. We purpose a modular approach that sepa-
rates the model into independent, modality-specific submodels,
allowing for on-demand loading and inference based on the
modalities relevant to a given task. In addition, we explore
model quantization, experimenting with both dynamic and static
quantization techniques. These optimizations lead to a notable
decrease in memory usage and inference time with minimal
impact to the integrity of multimodal embeddings. We also
investigate compatibility with edge devices and multi-threaded
inference setups, highlighting how our optimizations maintain
performance while expanding deployment options, enabling real-
time applications such as AR, robotics, and assistive tech. Thus,
making ImageBind more scalable and applicable in real-world
scenarios where resources are constrained.

Index Terms—ImageBind, Embeddings, Optimizations, Quan-
tization, Decomposition

I. INTRODUCTION

ImageBind [1] represents a novel contribution in multimodal
representation learning by learning a unified embedding space
across six modalities: images, text, audio, depth, thermal,
and inertial measurement unit (IMU) data. Its innovation
lies in bringing all these modalities together based on just
image-paired data—successfully removing the requirement of
large co-occurring multimodal datasets. By leveraging the
innate connections that images have to other sensory inputs,
ImageBind is able to learn unified representations capable
of facilitating powerful zero-shot performance across a wide
range of modalities. Thus enabling functionalities like cross-
modal retrieval tasks, compositional reasoning via embedding
arithmetic, in addition to detection and generation tasks across
diverse modalities.

The work presented herein purposes a series of enhance-
ments for improving the efficiency, modularity, and overall
usability of ImageBind without compromising its robust ca-
pabilities for cross-modal representation. As an initial step,
we restructured the architecture into discrete, modality-specific
components, enabling selective inference based on the modal-
ities relevant to the task. Additionally, we investigated quanti-
zation, both dynamic and static techniques, where we signif-
icantly reduced the model’s memory footprint with minimal
degradation in performance. Collectively, these enhancements
make ImageBind more flexible and efficient for a wide range
of real-world applications where resources are constrained.

II. RELATED WORKS

The swift advancement of multimodal embedding models
has been driven by the success of contrastive learning models,

including CLIP [Radford et al., 2021] [2], ALIGN [Jia et al.,
2021] [3], and Florence [Yuan et al., 2021] [4]. These models
have shown that big image-text alignment can be attained ef-
fectively using paired datasets and scalable architectures. Au-
dioCLIP [Guzhov et al., 2021] [5] expanded this to the audio
modality, and ImageBind [Girdhar et al., 2023] [1] expanded
upon this by jointly embedding six distinct modalities within
one representational space at once. In spite of their state-of-
the-art performance, increasing modality coverage tends to
result in much larger model sizes.

The inherently modular structure of models such as CLIP
and ImageBind opens up promising avenues for optimization.
These models rely on separate modality-specific encoders,
allowing for targeted improvements such as weight pruning,
quantization, and selective activation, without disrupting the
entire architecture.

In model compression, Bondarenko et al. [2021] tackled
the challenges of efficient transformer quantization [6], a
key problem because transformer-based backbones are the
foundation for numerous such multimodal models. Their work
is to highlight trade-offs between latency and precision, with
an emphasis on the difficulty of maintaining performance when
compressing the model.

Likewise, Zhu and Gupta [2017] examined pruning methods
in their work ”To Prune or Not to Prune” [7], demonstrating
that big sparse models can achieve better results than the same-
sized small dense models in most tasks. Their incremental
pruning method provides an effective means of compressing
deep neural networks to be implemented on resource-limited
environments, and their results strongly speak in favor of
the importance of hardware accelerators specialized in sparse
computation.

Taking advantage of pruning, Kwon et al. [2022] proposed
a post-training pruning framework for transformers [8] that
achieved up to 50% FLOPs reduction and latency savings
with negligible loss in accuracy—all in a matter of seconds
of computation. This demonstrates the feasibility of quick,
training-free model optimization.

A complementary approach is knowledge distillation. Gou
et al. [2021] provided a thorough review of this approach
[9], in which a smaller student” model learns to imitate a
larger pretrained “teacher.”” This strategy enables substantial
size and inference cost reductions with much of the original
performance preserved—a central concern for real-time or
edge deployment of multimodal models.

Our work builds upon these prior efforts, providing a
strong foundation for exploring optimizations for multimodal
embedding models like ImageBind in resource-constrained
environments.



III. METHODOLOGY AND EXPERIMENTAL SETUP

We propose a modular architecture for the ImageBind model
to reduce its memory footprint during inference, especially
when working with a subset of modalities. Our approach
decomposes the monolithic architecture into independent sub-
modules per modality, allowing selective loading and in-
ference. In addition to modularization, we explore model
quantization techniques, both dynamic and static, to further
compress the model and accelerate inference while maintain-
ing reasonable performance across modalities.

A. Modular Decomposition

The original ImageBind model, released as a single mono-
lithic architecture, includes multiple modality pipelines bun-
dled together which is memory inefficient when only a subset
of modalities is required. To overcome this limitaion, we
split the model into individual submodules, one for each of
the supported modalities: vision, text, audio, depth, IMU,
and thermal. Each submodule includes its own preprocessor,
trunk, head, and postprocessor. The proposed architectural
restructuring enables loading only the necessary components
at inference, significantly reducing the GPU memory footprint.
The resulting sizes of the modular weights are summarized in
Table I.

TABLE I
PER-MODALITY CHECKPOINT SIZES AFTER SPLITTING

Modality Checkpoint Size
Audio 329.018 MB
Depth 83.490 MB
MU 74.798 MB

Text 1.318 GB

Thermal 328.925 MB

Vision 2.357 GB
Total (Combined) 4473 GB

To facilitate modular execution, we extended the model
loading mechanism to accept a list of desired modalities.
Thus only the relevant submodules are instantiated and loaded
into memory. This effectively enables the model to operate
in a reduced configuration without impacting other modality
pipelines or the embedding performance.

We validated the memory optimization using several tools
and techniques:

o Python’s memory_ profiler was employed to mon-
itor peak memory usage during inference with different
modality subsets.

o Manual calculation of model memory requirements was
performed using the parameter and buffer counts per
submodule.

o Runtime diagnostics were conducted to ensure that
unnecessary submodules were not inadvertently loaded.

B. Quantization of ImageBind

Quantization is an effective technique for reducing the
memory footprint and computational load of neural networks
by transforming floating-point weights and activations into

lower-bit representations. This section presents our experi-
mental results on model quantization applied to ImageBind.
We explored both dynamic and static quantization approaches
using PyTorch’s Eager Mode Quantization framework.

As of PyTorch 2.6, there are three quantization methods
available: Eager Mode Quantization (beta), FX Graph Mode
Quantization (prototype), and PyTorch 2 Export Quantization
(prototype). Due to its more mature implementation, we se-
lected Eager Mode for our experiments, focusing specifically
on dynamic and static quantization techniques.

The ImageBind architecture incorporates diverse layer
types including Conv2d, Conv3d, Linear, Embedding,
and MultiheadAttention layers. Different quantization
modes offer varying levels of support for these layers. Dy-
namic quantization operates at inference time, converting
weights to lower precision while keeping activations in full
precision. Static quantization quantizes both weights and ac-
tivations using a calibration process on representative data.

1) Dynamic Quantization: offers an accessible approach
that does not require architectural modifications. We applied
PyTorch’s quantize_dynamic method with the following
configuration:

e gconfig_spec: Targeted
nn.LayerNorm, nn.Embedding,
and nn.GELU layers

e dtype: int8 precision for weights

nn.Linear,
nn.Dropout,

For Embedding layers, we set the quantization configu-
ration to float_gparams_weight_only_gconfig. We
evaluated the quantized model using a combination of repre-
sentative examples and random inputs across all modalities.
Our results demonstrate significant improvements in model
efficiency summarized in Table II and Table III shows the
cosine similarity between outputs from the original and quan-
tized models across different modalities.

TABLE II
DYNAMIC QUANTIZATION PERFORMANCE (ALL SUPPORTED LAYERS)

Metric Value
Original model size 4581.14 MB
Quantized model size | 2246.47 MB

Size reduction 50.96%

Speed improvement 33.20%

TABLE III
COSINE SIMILARITY BETWEEN ORIGINAL AND DYNAMICALLY
QUANTIZED MODEL OUTPUTS

Modality | Average Cosine Similarity
Vision 0.943
Text 0.906
Audio 0.989
Depth 0.993
Thermal 0.999
IMU 0.999

Since Linear layers account for the majority of the
model’s parameters, we conducted an additional experiment
quantizing only these layers. The results were comparable to
quantizing all supported layers, as shown in Tables IV and V.



TABLE IV
DYNAMIC QUANTIZATION PERFORMANCE (LINEAR LAYERS ONLY)
Metric Value
Original model size 4581.14 MB
Quantized model size | 2246.47 MB
Size reduction 50.96%
Speed improvement 32.93%

TABLE V
COSINE SIMILARITY FOR LINEAR-ONLY QUANTIZATION

Modality | Average Cosine Similarity
Vision 0.948
Text 0.898
Audio 0.990
Depth 0.993
Thermal 0.999
MU 0.999

These results demonstrate that dynamic quantization
achieves substantial efficiency gains while maintaining output
similarity above 90% across all modalities.

2) Static Quantization: offers a more comprehensive opti-
mization by quantizing both weights and activations, result-
ing in greater size reduction and performance improvements.
However, it requires architectural modifications to support the
quantization process.

ImageBind’s architecture consists of four module types for
each modality: preprocessor, trunk, head, and postprocessor.
We excluded preprocessors from quantization due to their
relatively small parameter count and critical impact on down-
stream modules. The following modifications were necessary
to support static quantization:

1) Addition of QuantStub modules at input points to
capture and quantize input tokens from each modality

2) Custom handling of the Normalize module, which
uses torch.nn.functional.normalize (not di-
rectly quantizable)

3) Integration of QuantStub and DeQuantStub wrap-
pers around the DropPath module from the TIMM
library

4) Custom mapping for MultiheadAttention mod-
ules using custom_module_config to their quanti-
zable counterparts

5) Addition of a final DeQuantStub to convert output
embeddings back to float32

These modifications maintain the original architecture’s
functionality while enabling quantization support. Our static
quantization process followed three key steps:

1) Preparation: Attaching observer or fake quantization
modules and propagating quantization configurations

2) Calibration: Passing representative data through the
model for observers to analyze tensor value distributions

3) Conversion: Converting modules to their quantized ver-
sions and removing observer modules

We  configured  quantization  parameters  using
PyTorch’s QConfig with HistogramObserver for
activations  (quant_max=255, quant_min=0) and

default_per_channel_weight_observer for
weights. Results are presented in Tables VI and VIIL

TABLE VI
STATIC QUANTIZATION PERFORMANCE
Metric Value
Original model size 4581.14 MB
Quantized model size | 1316.30 MB
Size reduction 71.27%
Speed improvement 68.96%

TABLE VII
COSINE SIMILARITY BETWEEN ORIGINAL AND STATICALLY QUANTIZED
MODEL OUTPUTS

Modality | Average Cosine Similarity
Vision 0.779
Text 0.407
Audio 0.929
Depth 0.979
Thermal 0.985
IMU 0.998

Our full implementation, including training scripts and
model configurations, is available at [10] and [11]

IV. ANALYSIS AND DISCUSSION

The modularization experiment demonstrated that decom-
posing the ImageBind model into modality-specific submod-
ules enabled selective loading which reduced memory usage
significantly during inference. The observed memory usage
during inference was in line with the expected theoretical
values calculated from the sizes of the loaded checkpoints. For
example, using only the vision and text modalities resulted in
approximately 3764 MB of memory usage, which matched the
combined sizes of the corresponding submodules.

Our quantization experiments revealed significant differ-
ences between dynamic and static quantization approaches.
Dynamic quantization achieved a 50.96% size reduction with
33.20% speed improvement while maintaining high output
similarity (>90%) across all modalities. Static quantization
delivered superior efficiency gains with 71.27% size reduc-
tion and 68.96% speed improvement but exhibits substantial
accuracy degradation in text (40.7%) and vision (77.9%)
modalities.

Several factors may contribute to the accuracy degradation
in static quantization:

« Calibration data quality: Our proof-of-concept used
random inputs rather than truly representative data, po-
tentially leading to suboptimal quantization parameters.

o Quantization granularity: Text and vision modalities
may require more nuanced per-layer quantization strate-
gies or selective quantization of critical layers.

o Architecture sensitivity: These modalities might in-
corporate operations particularly sensitive to activation
quantization.

Future work should explore improved calibration techniques
with domain-specific data, per-layer quantization configura-
tions, and quantization-aware training to mitigate accuracy
loss.



V. CONCLUSION

We proposed and evaluated two optimization techniques
for the ImageBind model: modularization and quantization.
Our modularization approach successfully reduced memory
overhead by allowing selective loading of sub-modules based
on required modalities. Memory usage during inference was
consistent with theoretical expectations,thereby confirming the
feasibility of fine-grained modular deployment.

Quantization experiments also reduced resource require-
ments. Dynamic quantization provided a good balance be-
tween model size, speed, and accuracy, making it a practical
solution for real-world applications. Although static quanti-
zation offered more substantial efficiency improvements, it
introduced unacceptable performance degradation in certain
modalities. Addressing these issues through better calibration
and quantization-aware training remains a promising avenue
for future research.

Together, these results highlight the potential of modular,
quantized multi-modal embedding models for efficient, infer-
ence in resource-constrained settings.

REFERENCES

[1] R. Girdhar, A. El-Nouby, Z. Liu, M. Singh, K. V. Alwala, A. Joulin,
and 1. Misra, “Imagebind: One embedding space to bind them all,”
2023. [Online]. Available: https://arxiv.org/abs/2305.05665

[2] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh,
S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and
I. Sutskever, “Learning transferable visual models from natural language
supervision,” 2021. [Online]. Available: https://arxiv.org/abs/2103.00020

[3] C. Jia, Y. Yang, Y. Xia, Y.-T. Chen, Z. Parekh, H. Pham, Q. V. Le,
Y. Sung, Z. Li, and T. Duerig, “Scaling up visual and vision-language
representation learning with noisy text supervision,” 2021. [Online].
Available: https://arxiv.org/abs/2102.05918

[4] L. Yuan, D. Chen, Y.-L. Chen, N. Codella, X. Dai, J. Gao, H. Hu,
X. Huang, B. Li, C. Li, C. Liu, M. Liu, Z. Liu, Y. Lu, Y. Shi,
L. Wang, J. Wang, B. Xiao, Z. Xiao, J. Yang, M. Zeng, L. Zhou, and
P. Zhang, “Florence: A new foundation model for computer vision,”
2021. [Online]. Available: https://arxiv.org/abs/2111.11432

[5] A. Guzhov, F. Raue, J. Hees, and A. Dengel, “Audioclip:
Extending clip to image, text and audio,” 2021. [Online]. Available:
https://arxiv.org/abs/2106.13043

[6] Y. Bondarenko, M. Nagel, and T. Blankevoort, “Understanding and
overcoming the challenges of efficient transformer quantization,” 2021.
[Online]. Available: https://arxiv.org/abs/2109.12948

[71 M. Zhu and S. Gupta, “To prune, or not to prune: exploring the
efficacy of pruning for model compression,” 2017. [Online]. Available:
https://arxiv.org/abs/1710.01878

[8] W. Kwon, S. Kim, M. W. Mahoney, J. Hassoun, K. Keutzer, and
A. Gholami, “A fast post-training pruning framework for transformers,”
2022. [Online]. Available: https://arxiv.org/abs/2204.09656

[91 J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge
distillation: A survey,” International Journal of Computer Vision,
vol. 129, no. 6, p. 1789-1819, Mar. 2021. [Online]. Available:
http://dx.doi.org/10.1007/s11263-021-01453-z

[10] A. Saed, “Modular imagebind - load modules based on selected
modailites,”  https://github.com/facebookresearch/ImageBind/pull/138,
2025, contribution to the open-source project ImageBind on GitHub.

[1] —, “Quantized imagebind - applying dy-
namic and static quantization of imagebind,”
https://github.com/ahmedsaed/ImageBind/tree/quantization, 2025,

contribution to the open-source project ImageBind on GitHub.



